

Estruturas para Transporte e Armazenamento de Energia Petrolífera

1 ENGENHARIA
ARQUITECTURA
URBANISMO

Eng.^a Inês Grilo

Departamento de Estruturas

Estrutura da apresentação

Estruturas para Transporte e Armazenamento de Energia Petrolífera

- 1. Quem somos
- 2. Introdução
 - Terminal de Armazenamento de Combustíveis em Walvis Bay
 - Tank Farm em Windhoek
- 3. Desafios
- 4. Conclusão

Estrutura da apresentação

Estruturas para Transporte e Armazenamento de Energia Petrolífera

- 1. Quem somos
- 2. Introdução
 - Terminal de Armazenamento de Combustíveis em Walvis Bay
 - Tank Farm em Windhoek
- 3. Desafios
- 4. Conclusão

1. Quem somos

1. Quem somos

Λ1 |V2

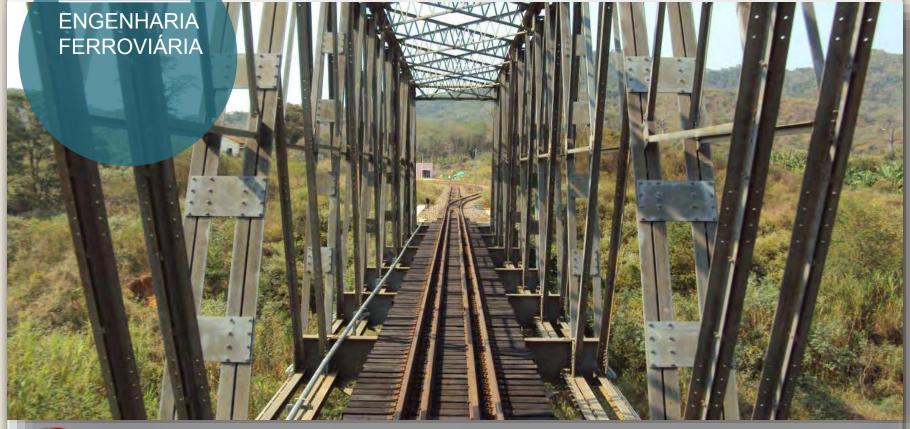
Fundada em 1997, a A1V2 é uma empresa portuguesa com presença internacional que combina, a um elevado nível, todas as valências da Engenharia e da Arquitetura

Juntamos Engenharia e Arquitetura para construir o mundo à sua volta

ESTRUTURAS ENGENHARIA RODOVIÁRIA ENGENHARIA FERROVIÁRIA ENGENHARIA AEROPORTUÁRIA HIDRÁULICA E RECURSOS HÍDRICOS ARQUITETURA **URBANISMO** ELETROMECÂNICA FISCALIZAÇÃO CONSULTORIA

MODELAÇÃO 3D

SERVIÇOS


SERVIÇOS

SERVIÇOS

1.Quem somos

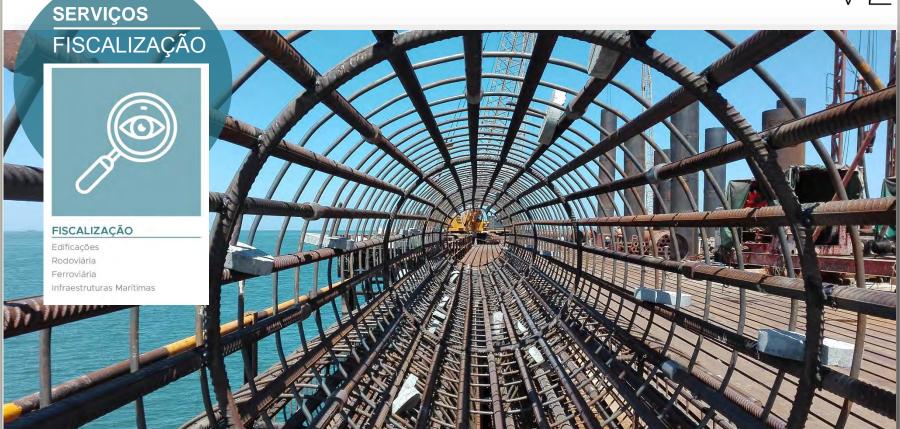
/\1 \2

ARQUITETURA

ARQUITETURA

Habitação Comércio Cultura Educação Corporativa Religião

Industria



1.Quem somos

1.Quem somos

Estrutura da apresentação

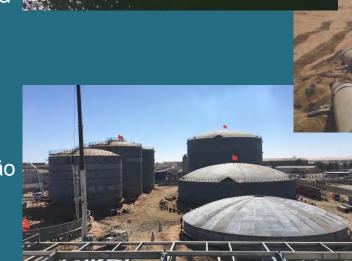
Estruturas para Transporte e Armazenamento de Energia Petrolífera

- 1. Quem somos
- 2. Introdução
 - Terminal de Armazenamento de Combustíveis em Walvis Bay
 - Tank Farm em Windhoek
- 3. Desafios
- 4. Conclusão

Localização:

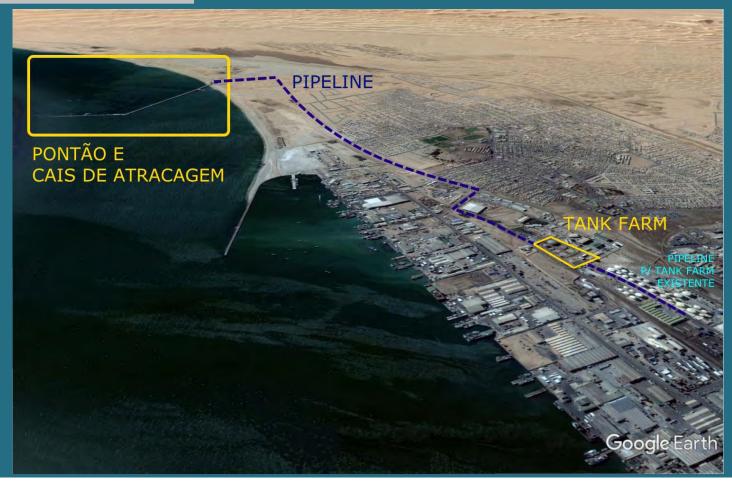
Walvis Bay, Namíbia

Dono de Obra:


Ministério de Minas e Energia do Governo da Namíbia

Função da A1V2:

Gestão de Contratos Revisão Projeto / Fiscalização


Duração dos Trabalhos:

3 anos

Zona: Pontão e Cais de Atracagem

Zona: Pipelines

Zona: Tank Farm - Tanques

${\scriptstyle 2.} Introdução \\$

Zona: Tank Farm – Equipamentos

/\| |\/2

1 ENGENHARIA ARQUITECTURA URBANISMO

Estrutura da apresentação

Estruturas para Transporte e Armazenamento de Energia Petrolífera

- 1. Quem somos
- 2. Introdução
 - Terminal de Armazenamento de Combustíveis em Walvis Bay
 - Tank Farm em Windhoek
- 3. Desafios
- 4. Conclusão

Localização:

Windhoek, Namíbia

Dono de Obra:

NAMCOR

Empresa Exploração de Petróleo

Função da A1V2:

Gestão de Projeto

Projetista / Fiscalização

Duração dos Trabalhos:

2 anos

Estrutura da apresentação

Estruturas para Transporte e Armazenamento de Energia Petrolífera

- 1. Quem somos
- 2. Introdução
 - Terminal de Armazenamento de Combustíveis em Walvis Bay
 - Tank Farm em Windhoek
- 3. Desafios
- 4. Conclusão

3. Desafios

- Multidisciplinariedade
- Regulamentação
- Condicionantes de definição do Layout
- Materiais e Processos Construtivos
- Condicionantes estruturais

3. Desafios Multidisciplinariedade

Projetos com muitas Especialidades envolvidas

Project Management	Structural	Raill	Architectural
Electrical	Fire Fighting	Instrumentation & Control	Pipeline
Civil	Mechanical (Static / Rotating)	Telecomunication	Cathodic Protection
Hydrology	QA / QC	Water / Waste Water	HVAC

Multidisciplinaridade Internacional

3. Desafios

- Multidisciplinariedade
- Regulamentação
- Condicionantes de definição do Layout
- Materiais e Processos Construtivos
- Condicionantes estruturais

3. Desafios Regulamentação

CODE & STANDARD

AUTOMOLIS PAR

SANS 10400-B:2010	The application of the National Building Regulations. Part B: Structural Design
SANS 10160-1:2010	Basis of Structural Design and Actions for Buildings and Industrial Structures. Part 1: Basis of structural Design
SANS 10160-2:2010	Basis of Structural Design and Actions for Buildings and Industrial Structures. Part 2: Self-Weight and Imposed Loads
SANS 10160-3:2010	Basis of Structural Design and Actions for Buildings and Industrial Structures. Part 3: Wind Actions
SANS 10160-4:2010	Basis of Structural Design and Actions for Buildings and Industrial Structures. Part 4: Seismic Actions and General Requirements for Buildings
SANS 10160-5:2010	Basis of Structural Design and Actions for Buildings and Industrial Structures. Part 5: Basis for Geotechnical Design and Actions
SANS 10160-6:2010	Basis of Structural Design and Actions for Buildings and Industrial Structures. Part 6: Actions Induced by Cranes and Machinery
SANS 10160-7:2010	Basis of Structural Design and Actions for Buildings and Industrial Structures. Part 7: Thermal Actions
SANS 10160-8:2010	Basis of Structural Design and Actions for Buildings and Industrial Structures. Part 8: Actions During Execution
SANS 10100-1:2000	The Structural Use of Concrete. Part 1: Design
SANS 10100-2:2000	The Structural Use of Concrete. Part 2: Materials and Execution Work
SANS 10144:2012	Detailing of Steel Reinforcement for concrete
SANS 10162-1:2011	The Structural Use of Steel - Part 1: Limit State Design of Hot-Rolled Steelwork
SANS 10162-2:2011	The Structural Use of Steel - Part 2: Limit-States Design of Cold-Rolled Steelwork
SANS 10162-4:2011	The Structural Use of Steel - Part 4: Limit-States Design of Cold-Formed Stainless Steel Structural Members
SANS 10164-1:1980	The Structural use of Masonry - Part 1: Unreinforced Masonry Walling
SANS 10145:2013	Concrete Masonry Construction
SANS 10089-1:2008	The Petroleum Industry - Part 1: Storage and Distribution of Petroleum Products in above-Ground Bulk Installations
SANS 10131:2004	Above Ground Storage Tanks for Petroleum Products

The Design of Foundations for Buildings

CODE DESCRIPTION AND/OR TITLE

SANS 10161:1980

Basis of Structural Design

- Self-Weight and Imposed Loads
- Wind Actions
- Thermal Actions
- Seismic Actions
- Actions induced by cranes and machinery
- Actions during execution
- Geotechnical Design and Actions

Design of Concrete Structures

Design of Steel Structures

Design of Masonry

Design of Foundations for Buildings

Regulamentação Específica para Tanks: Normas Americanas

Process Industry Practices Structural

PIP STE03020
Guidelines for Tank Foundation Designs

- Multidisciplinariedade
- Regulamentação
- Condicionantes de definição do Layout
- Materiais e Processos Construtivos
- Condicionantes estruturais

3. Desafios Definição de Layout

3. Desafios Definição de Layout

3. Desafios Definição de Layout

/\| \|2

- Multidisciplinariedade
- Regulamentação
- Condicionantes de definição do Layout
- Materiais e Processos Construtivos
- Condicionantes estruturais

Materiais Construtivos

Namíbia:

- Betão Armado
- Estrutura Metálica
- Estrutura em LSF
- Alvenaria Estrutural

Material baixo custo

3. Desafios Materiais Construtivos

3. Desafios Processos Construtivos - Tanques

/\1 \/2

1° - Construção do anel de topo

3° - Colocação dos aparelhos de elevação

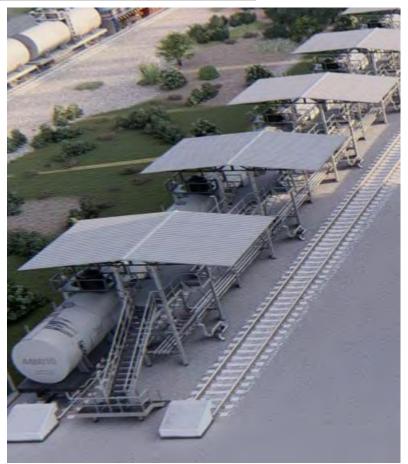
2° - Construção da cobertura

4° - Construção do anel seguinte e posterior elevação

3. Desafios Processos Construtivos

3. Desafios

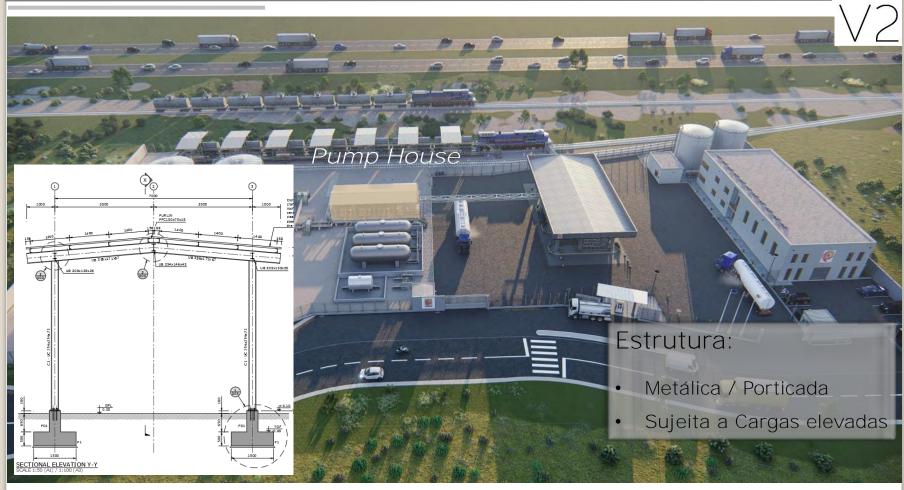
- Multidisciplinariedade
- Regulamentação
- Condicionantes de definição do Layout
- Materiais e Processos Construtivos
- Condicionantes estruturais



- Metálica
- Passadiço elevado
- 100 metros comprimento
 - 7 plataformas cobertas

Estrutura:

- Metálica
- Passadiço elevado
- 80 metros comprimento
- Plataforma toda coberta



Pump House - Cargas Elevadas:

- Monocarris / Pontes rolantes
 condicionam <u>Pórticos Metálicos</u>
- Bombas / Equipamentos
 condicionam <u>Fundações / Laje fundo</u>

Ilhas/Bays & PipeRack:

 Vão livre significativo (30m) para circulação livre de veículos

Ilhas/Bays & PipeRack:

- Vão livre significativo (30m) para circulação livre de veículos
- Define-se a estrutura a partir da posição das tubagens e equipamentos
 - Distância entre pórticos
 - Localização dos travamentos
- Estruturas sujeitas a cargas elevadas (considerar todas as tubagens em pleno funcionamento, na sua capacidade máxima)

Bays & PipeRack:

Estrutura da apresentação

Estruturas para Transporte e Armazenamento de Energia Petrolífera

- 1. Quem somos
- 2. Introdução
 - Terminal de Armazenamento de Combustíveis em Walvis Bay
 - Tank Farm em Windhoek
- 3. Desafios
- 4. Conclusão

Projetos ≠ habitual

Desafios:

- Muitas especialidades envolvidas
- ✓ Regulamentação local
- Diversas condicionantes
- Processos construtivos
- Estruturas "especiais"

Projetos Interessantes!

FIM

23 Outubro de 2019

ARQUITECTURA

URBANISMO

A1V2 Engenharia Civil e Arquitectura, Lda.

Rua do Mar da China, Edifício Mar do Oriente, N.º 1, Fração 3.1 1990-137 Lisboa — PORTUGAL

T. +351 218 438 550

www.a1v2.pt lisboa@a1v2.pt

PORTUGAL | ANGOLA | ARGÉLIA | MARROCOS | NAMÍBIA | QATAR | COLÔMBIA | ÍNDIA

